Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.495
Filtrar
1.
Front Immunol ; 15: 1378277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596687

RESUMO

Despite significant progress in targeted therapy for acute myeloid leukemia (AML), clinical outcomes are disappointing for elderly patients, patients with less fit disease characteristics, and patients with adverse disease risk characteristics. Over the past 10 years, adaptive T-cell immunotherapy has been recognized as a strategy for treating various malignant tumors. However, it has faced significant challenges in AML, primarily because myeloid blasts do not contain unique surface antigens. The preferentially expressed antigen in melanoma (PRAME), a cancer-testis antigen, is abnormally expressed in AML and does not exist in normal hematopoietic cells. Accumulating evidence has demonstrated that PRAME is a useful target for treating AML. This paper reviews the structure and function of PRAME, its effects on normal cells and AML blasts, its implications in prognosis and follow-up, and its use in antigen-specific immunotherapy for AML.


Assuntos
Antígenos de Neoplasias , Leucemia Mieloide Aguda , Masculino , Humanos , Idoso , Leucemia Mieloide Aguda/terapia , Linfócitos T , Prognóstico , Leucócitos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38558345

RESUMO

Fenoxaprop-p-ethyl (FE) is one of the typical aryloxyphenoxypropionate herbicides. FE has been widely applied in agriculture in recent years. Human health and aquatic ecosystems are threatened by the cyanobacteria blooms caused by Microcystis aeruginosa, which is one of the most common cyanobacteria responsible for freshwater blooming. Few studies have been reported on the physiological effects of FE on M. aeruginosa. This study analyzed the growth curves, the contents of chlorophyll a and protein, the oxidative stress, and the microcystin-LR (MC-LR) levels of M. aeruginosa exposed to various FE concentrations (i.e., 0, 0.5, 1, 2, and 5 mg/L). FE was observed to stimulate the cell density, chlorophyll a content, and protein content of M. aeruginosa at 0.5- and 1-mg/L FE concentrations but inhibit them at 2 and 5 mg/L FE concentrations. The superoxide dismutase and catalase activities were enhanced and the malondialdehyde concentration was increased by FE. The intracellular (intra-) and extracellular (extra-) MC-LR contents were also affected by FE. The expression levels of photosynthesis-related genes psbD1, psaB, and rbcL varied in response to FE exposure. Moreover, the expressions of microcystin synthase-related genes mcyA and mcyD and microcystin transportation-related gene mcyH were significantly inhibited by the treatment with 2 and 5 mg/L FE concentrations. These results might be helpful in evaluating the ecotoxicity of FE and guiding the rational application of herbicides in modern agriculture.

3.
Biol Reprod ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38590182

RESUMO

Sertoli cells (SCs) act as highly polarized testicular cells that nutritionally support multiple stages of germ cell development. However, the gene regulation network in SCs for modulating germ cell development has yet to be fully understood. In this study, we report that heterogeneous nuclear ribonucleoproteins C (hnRNPC) in SCs are essential for germ cell development and male fertility. Conditional knockout of hnRNPC in mouse SCs leads to aberrant SC proliferation, disrupted cytoskeleton of SCs, and compromised blood-testis barrier function, resulting in loss of supportive cell function and, ultimately, defective spermiogenesis in mice. Further RNA-seq analyses revealed these phenotypes are likely caused by the dysregulated genes in hnRNPC-deficient SCs related to cell adhesion, cell proliferation, and apoptotic process. In conclusion, this study demonstrates that hnRNPC plays a critical role in SCs for maintaining the function of SCs and sustaining steady-state spermatogenesis in mice.

4.
J Virol ; : e0011624, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591880

RESUMO

Flaviviruses in the Japanese encephalitis virus (JEV) serogroup, such as JEV, West Nile virus, and St. Louis encephalitis virus, can cause severe neurological diseases. The nonstructural protein 1 (NS1) is a multifunctional protein of flavivirus that can be secreted by infected cells and circulate in the host bloodstream. NS1' is an additional form of NS1 protein with 52 amino acids extension at its carboxy-terminal and is produced exclusively by flaviviruses in the JEV serogroup. In this study, we demonstrated that the secreted form of both NS1 and NS1' can disrupt the blood-brain barrier (BBB) of mice, with NS1' exhibiting a stronger effect. Using the in vitro BBB model, we found that treatment of soluble recombinant JEV NS1 or NS1' protein increases the permeability of human brain microvascular endothelial cells (hBMECs) and leads to the degradation of tight junction proteins through the autophagy-lysosomal pathway. Consistently, NS1' protein exhibited a more pronounced effect compared to NS1 in these cellular processes. Further research revealed that the increased expression of macrophage migration inhibitory factor (MIF) is responsible for triggering autophagy after NS1 or NS1' treatment in hBMECs. In addition, TLR4 and NF-κB signaling was found to be involved in the activation of MIF transcription. Moreover, administering the MIF inhibitor has been shown to decrease viral loads and mitigate inflammation in the brains of mice infected with JEV. This research offers a novel perspective on the pathogenesis of JEV. In addition, the stronger effect of NS1' on disrupting the BBB compared to NS1 enhances our understanding of the mechanism by which flaviviruses in the JEV serogroup exhibit neurotropism.IMPORTANCEJapanese encephalitis (JE) is a significant viral encephalitis worldwide, caused by the JE virus (JEV). In some patients, the virus cannot be cleared in time, leading to the breach of the blood-brain barrier (BBB) and invasion of the central nervous system. This invasion may result in cognitive impairment, behavioral disturbances, and even death in both humans and animals. However, the mechanism by which JEV crosses the BBB remains unclear. Previous studies have shown that the flavivirus NS1 protein plays an important role in causing endothelial dysfunction. The NS1' protein is an elongated form of NS1 protein that is particularly produced by flaviviruses in the JEV serogroup. This study revealed that both the secreted NS1 and NS1' of JEV can disrupt the BBB by breaking down tight junction proteins through the autophagy-lysosomal pathway, and NS1' is found to have a stronger effect compared to NS1 in this process. In addition, JEV NS1 and NS1' can stimulate the expression of MIF, which triggers autophagy via the ERK signaling pathway, leading to damage to BBB. Our findings reveal a new function of JEV NS1 and NS1' in the disruption of BBB, thereby providing the potential therapeutic target for JE.

5.
BMC Plant Biol ; 24(1): 263, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594616

RESUMO

BACKGROUND: In agricultural production, fungal diseases significantly impact the yield and quality of cotton (Gossypium spp.) with Verticillium wilt posing a particularly severe threat. RESULTS: This study is focused on investigating the effectiveness of endophytic microbial communities present in the seeds of disease-resistant cotton genotypes in the control of cotton Verticillium wilt. The technique of 16S ribosomal RNA (16S rRNA) amplicon sequencing identified a significant enrichment of the Bacillus genus in the resistant genotype Xinluzao 78, which differed from the endophytic bacterial community structure in the susceptible genotype Xinluzao 63. Specific enriched strains were isolated and screened from the seeds of Xinluzao 78 to further explore the biological functions of seed endophytes. A synthetic microbial community (SynCom) was constructed using the broken-rod model, and seeds of the susceptible genotype Xinluzao 63 in this community that had been soaked with the SynCom were found to significantly control the occurrence of Verticillium wilt and regulate the growth of cotton plants. Antibiotic screening techniques were used to preliminarily identify the colonization of strains in the community. These techniques revealed that the strains can colonize plant tissues and occupy ecological niches in cotton tissues through a priority effect, which prevents infection by pathogens. CONCLUSION: This study highlights the key role of seed endophytes in driving plant disease defense and provides a theoretical basis for the future application of SynComs in agriculture.


Assuntos
Microbiota , Verticillium , Verticillium/fisiologia , Gossypium/genética , Gossypium/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Sementes/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética
6.
Front Cardiovasc Med ; 11: 1337586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516004

RESUMO

Cardiovascular diseases have been identified as vital factors in global morbidity and mortality in recent years. The available evidence suggests that various cytokines and pathological proteins participate in these complicated and changeable diseases. The thrombospondin (TSP) family is a series of conserved, multidomain calcium-binding glycoproteins that cause cell-matrix and cell-cell effects via interactions with other extracellular matrix components and cell surface receptors. The TSP family has five members that can be divided into two groups (Group A and Group B) based on their different structures. TSP-1, TSP-2, and TSP-4 are the most studied proteins. Among recent studies and findings, we investigated the functions of several family members, especially TSP-5. We review the basic concepts of TSPs and summarize the relevant molecular mechanisms and cell interactions in the cardiovascular system. Targeting TSPs in CVD and other diseases has a remarkable therapeutic benefit.

7.
Prog Neurobiol ; 235: 102599, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522610

RESUMO

Gene regulation in the hippocampus is fundamental for its development, synaptic plasticity, memory formation, and adaptability. Comparisons of gene expression among different developmental stages, distinct cell types, and specific experimental conditions have identified differentially expressed genes contributing to the organization and functionality of hippocampal circuits. The NEIL3 DNA glycosylase, one of the DNA repair enzymes, plays an important role in hippocampal maturation and neuron functionality by shaping transcription. While differential gene expression (DGE) analysis has identified key genes involved, broader gene expression patterns crucial for high-order hippocampal functions remain uncharted. By utilizing the weighted gene co-expression network analysis (WGCNA), we mapped gene expression networks in immature (p8-neonatal) and mature (3 m-adult) hippocampal circuits in wild-type and NEIL3-deficient mice. Our study unveiled intricate gene network structures underlying hippocampal maturation, delineated modules of co-expressed genes, and pinpointed highly interconnected hub genes specific to the maturity of hippocampal subregions. We investigated variations within distinct gene network modules following NEIL3 depletion, uncovering NEIL3-targeted hub genes that influence module connectivity and specificity. By integrating WGCNA with DGE, we delve deeper into the NEIL3-dependent molecular intricacies of hippocampal maturation. This study provides a comprehensive systems-level analysis for assessing the potential correlation between gene connectivity and functional connectivity within the hippocampal network, thus shaping hippocampal function throughout development.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Animais , Camundongos , Expressão Gênica , Redes Reguladoras de Genes/genética , Hipocampo
8.
Comput Biol Med ; 173: 108369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552283

RESUMO

BACKGROUND: Glomerular lesions reflect the onset and progression of renal disease. Pathological diagnoses are widely regarded as the definitive method for recognizing these lesions, as the deviations in histopathological structures closely correlate with impairments in renal function. METHODS: Deep learning plays a crucial role in streamlining the laborious, challenging, and subjective task of recognizing glomerular lesions by pathologists. However, the current methods treat pathology images as data in regular Euclidean space, limiting their ability to efficiently represent the complex local features and global connections. In response to this challenge, this paper proposes a graph neural network (GNN) that utilizes global attention pooling (GAP) to more effectively extract high-level semantic features from glomerular images. The model incorporates Bayesian collaborative learning (BCL), enhancing node feature fine-tuning and fusion during training. In addition, this paper adds a soft classification head to mitigate the semantic ambiguity associated with a purely hard classification. RESULTS: This paper conducted extensive experiments on four glomerular datasets, comprising a total of 491 whole slide images (WSIs) and 9030 images. The results demonstrate that the proposed model achieves impressive F1 scores of 81.37%, 90.12%, 87.72%, and 98.68% on four private datasets for glomerular lesion recognition. These scores surpass the performance of the other models used for comparison. Furthermore, this paper employed a publicly available BReAst Carcinoma Subtyping (BRACS) dataset with an 85.61% F1 score to further prove the superiority of the proposed model. CONCLUSION: The proposed model not only facilitates precise recognition of glomerular lesions but also serves as a potent tool for diagnosing kidney diseases effectively. Furthermore, the framework and training methodology of the GNN can be adeptly applied to address various pathology image classification challenges.


Assuntos
Práticas Interdisciplinares , Nefropatias , Humanos , Teorema de Bayes , Nefropatias/diagnóstico por imagem , Glomérulos Renais/diagnóstico por imagem , Redes Neurais de Computação
9.
Int J Biol Macromol ; 266(Pt 1): 131179, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552698

RESUMO

Collagen (COL) is the most widespread functional protein. Designing and developing dual-dynamic-bond cross-linked COL adhesive hydrogel sealants with multifunctional is highly advantageous for achieving a superior wound closure effect and hemostasis. In this study, we developed hybrid hydrogels consisting of fish-skin COL, oxidized sodium alginate (OSA), borax and polyvinyl alcohol (PVA) to enhance full-thickness wound healing. The hydrogels were furnished with first-rate self-healing capabilities through the dual-dynamic-bond cross-linking of dynamic Schiff base bonds (COL-OSA) and diol boric acid bonds (OSA-borax) with reversible breakage and re-formation. Moreover, the incorporation of PVA stimulated the formation of hydrogen bonds in the system, bolstering the stability of the hydrogel framework. The prepared hydrogel manifests self-healing, injectability, multifunctional adhesiveness and biodegradability. In vivo assessment of the hemostatic capacity of COSP20 hydrogel was superior to gauze both in the mice liver injury model and mice tail amputation model. In addition, a full-thickness skin wound model in mice revealed that the COSP20 hydrogel facilitated faster wound closure by accelerating reepithelialization, COL deposition and angiogenesis. These findings illustrate the potential of hybrid fish-skin COL-based hydrogels to enhance wound healing and promote rapid tissue repair, and provide new possibilities for the effective utilization of marine fishery resources.

10.
Int J Biol Macromol ; 266(Pt 1): 131021, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38522689

RESUMO

κ-Carrageenan (KC) is a polysaccharide widely used in food industry. It has been widely studied for its excellent physicochemical and beneficial properties. However, the high molecular weight and high viscosity of KC make it difficult to be absorbed and to exert its' biological activities, thus limit its extensive industrial application. In order to solve this problem, five low molecular weight κ-carrageenans (DCPs) were prepared by the degradation of KC using hydrogen peroxide (H2O2) and ascorbic acid (AH2). The chemical compositions and structure characteristics of the DCPs were then determined. The results showed that H2O2 and AH2 could effectively degrade KC to DCPs, and DCPs remained the basic skeletal structure of KC. DCPs showed good antibacterial activities against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus subtilis. The Minimum Inhibitory Concentration (MIC) of DCPs with the highest antibacterial effects were 5.25, 4.5, 5.25, and 4.5 mg/mL, respectively. This is due to the underlying mechanism of DCPs that bind to the bacterial membrane proteins and change the membrane permeability, thus exerting antibacterial activity. In addition, Spearman's rank correlation and Ridge regression analysis revealed that the molecular weight and the contents of 3,6-anhydro-D-galactose, aldehyde group, carboxyl, and sulfate were the main structural characteristics affecting the antibacterial activity. Our findings reveal that the H2O2-AH2 degradation treatment could significantly improve the antibacterial activity of KC and provide insights into the quantitative structure-activity relationships of the antibacterial activity of DCPs.

11.
J Vet Med Sci ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38479882

RESUMO

The study aimed to investigate the effect of Grid1, encoding the glutamate ionotropic receptor delta type subunit 1(GluD1), on puberty onset in female rats. Grid1 mRNA and protein expression was detected in the hypothalamus of female rats at prepuberty and puberty. Additionally, the expression of Grid1 was suppressed in primary hypothalamus cells and prepubertal rat. Finally, investigated the effect of Grid1 knockdown on puberty onset and reproductive performance. The levels of Grid1 mRNA in the hypothalamus, the fluorescence intensity in the arcuate nucleus and paraventricular nucleus of the prepubertal rats was significantly lower than pubertal. Treatment of hypothalamic neurons with LV-Grid1 decreased the level of Grid1 and Rfrp-3 (encoding RFamide-related peptide 3) mRNA expression, but increased the Gnrh (encoding gonadotropin-releasing hormone) mRNA levels. After an ICV injection, the time for the rat vaginal opening occurred earlier. Moreover, Gnrh mRNA expression was increased, whereas Rfrp-3 mRNA expression was decreased in the hypothalamus. The concentration of progesterone(P4) in the serum was significantly decreased compare with control group. Ovary hematoxylin-eosin staining revealed that the LV-Grid1 group mainly contained primary and secondary follicles. The reproductive performance of the rats was not affected by the Grid1 knockdown. Therefore, Grid1 may affect the onset of puberty in female rats by regulating the levels of Gnrh, and Rfrp-3 in the hypothalamus, as well as the concentrations of P4, but not reproduction performance.

12.
Cell Oncol (Dordr) ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502270

RESUMO

PURPOSE: Melanoma is widely utilized as a prominent model for the development of immunotherapy, thought an inadequate immune response can occur. Moreover, the development of apoptosis-related therapies and combinations with other therapeutic strategies is impeded by the limited understanding of apoptosis's role within diverse tumor immune microenvironments (TMEs). METHODS: Here, we constructed an apoptosis-related tumor microenvironment signature (ATM) and employ multi-dimensional analysis to understand the roles of apoptosis in tumor microenvironment. We further assessed the clinical applications of ATM in nine independent cohorts, and anticipated the impact of ATM on cellular drug response in cultured cells. RESULTS: Our ATM model exhibits robust performance in survival prediction in multiple melanoma cohorts. Different ATM groups exhibited distinct molecular signatures and biological processes. The low ATM group exhibited significant enrichment in B cell activation-related pathways. What's more, plasma cells showed the lowest ATM score, highlighting their role as pivotal contributors in the ATM model. Mechanistically, the analysis of the interplay between plasma cells and other immune cells elucidated their crucial role in orchestrating an effective anti-tumor immune response. Significantly, the ATM signature exhibited associations with therapeutic efficacy of immune checkpoint blockade and the drug sensitivity of various agents, including FDA-approved and clinically utilized drugs targeting the VEGF signaling pathway. Finally, ATM was associated with tertiary lymphoid structures (TLS), exhibiting stronger patient stratification ability compared to classical "hot tumors". CONCLUSION: Our findings indicate that ATM is a prognostic factor and is associated with the immune response and drug sensitivity in melanoma.

13.
J Neuroinflammation ; 21(1): 76, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532383

RESUMO

Japanese encephalitis virus (JEV) is a neurotropic pathogen that causes lethal encephalitis. The high susceptibility and massive proliferation of JEV in neurons lead to extensive neuronal damage and inflammation within the central nervous system. Despite extensive research on JEV pathogenesis, the effect of JEV on the cellular composition and viral tropism towards distinct neuronal subtypes in the brain is still not well comprehended. To address these issues, we performed single-cell RNA sequencing (scRNA-seq) on cells isolated from the JEV-highly infected regions of mouse brain. We obtained 88,000 single cells and identified 34 clusters representing 10 major cell types. The scRNA-seq results revealed an increasing amount of activated microglia cells and infiltrating immune cells, including monocytes & macrophages, T cells, and natural killer cells, which were associated with the severity of symptoms. Additionally, we observed enhanced communication between individual cells and significant ligand-receptor pairs related to tight junctions, chemokines and antigen-presenting molecules upon JEV infection, suggesting an upregulation of endothelial permeability, inflammation and antiviral response. Moreover, we identified that Baiap2-positive neurons were highly susceptible to JEV. Our findings provide valuable clues for understanding the mechanism of JEV induced neuro-damage and inflammation as well as developing therapies for Japanese encephalitis.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Japonesa (Subgrupo) , Encefalite Japonesa , Camundongos , Animais , Tropismo Viral , Sistema Nervoso Central/patologia , Encefalite Japonesa/patologia , Inflamação , Análise de Sequência de RNA
14.
MedComm (2020) ; 5(3): e491, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463394

RESUMO

Hypertensive vascular remodeling is defined as the changes in vascular function and structure induced by persistent hypertension. Maresin-1 (MaR1), one of metabolites from Omega-3 fatty acids, has been reported to promote inflammation resolution in several inflammatory diseases. This study aims to investigate the effect of MaR1 on hypertensive vascular remodeling. Here, we found serum MaR1 levels were reduced in hypertensive patients and was negatively correlated with systolic blood pressure (SBP). The treatment of MaR1 reduced the elevation of blood pressure and alleviated vascular remodeling in the angiotensin II (AngII)-infused mouse model. In addition, MaR1-treated vascular smooth muscle cells (VSMCs) exhibited reduced excessive proliferation, migration, and phenotype switching, as well as impaired pyroptosis. However, the knockout of the receptor of MaR1, leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6), was seen to aggravate pathological vascular remodeling, which could not be reversed by additional MaR1 treatment. The mechanisms by which MaR1 regulates vascular remodeling through LGR6 involves the Ca2+/calmodulin-dependent protein kinase II/nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway. Overall, supplementing MaR1 may be a novel therapeutic strategy for the prevention and treatment of hypertension.

15.
PLoS One ; 19(3): e0300074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457382

RESUMO

BACKGROUND: Observational studies have suggested associations between sedentary behaviors (SB), physical activity (PA), sleep duration (SD), and obesity, but the causal relationships remain unclear. METHODS: We used Mendelian randomization (MR) with genetic variation as instrumental variables (IVs) to assess the causality between SB/PA/SD and obesity. Genetic variants associated with SB/PA/SD were obtained from Genome-wide association study (GWAS), and obesity data came from FinnGen. The primary MR analysis used the instrumental variable weighted (IVW) method, with sensitivity tests including Cochran Q, MR-Egger intercepts, and MR-Radial. Expression Quantitative Trait Loci (eQTL) analysis was applied to identify significant genetic associations and biological pathways in obesity-related tissues. RESULTS: The MR analysis revealed causal relationships between four SB-related lifestyle patterns and obesity. Specifically, increased genetic liability to television watching (IVW MR Odds ratio [OR] = 1.55, [95% CI]:[1.27, 1.90], p = 1.67×10-5), computer use ([OR] = 1.52, [95% CI]:[1.08, 2.13], p = 1.61×10-2), leisure screen time (LST) ([OR] = 1.62, [95% CI] = [1.43, 1.84], p = 6.49×10-14, and driving (MR [OR] = 2.79, [95% CI]:[1.25, 6.21], p = 1.23×10-2) was found to increase the risk of obesity. Our findings indicate that no causal relationships were observed between SB at work, sedentary commuting, PA, SD, and obesity. The eQTL analysis revealed strong associations between specific genes (RPS26, TTC12, CCDC92, NICN1) and SNPs (rs10876864, rs2734849, rs4765541, rs7615206) in both subcutaneous and visceral adipose tissues, which are associated with these SBs. Enrichment analysis further revealed that these genes are involved in crucial biological pathways, including cortisol synthesis, thyroid hormone synthesis, and insulin secretion. CONCLUSIONS: Our findings support a causal relationship between four specific SBs (LST, television watching, computer use, driving) and obesity. These results provide valuable insights into potential interventions to address obesity effectively, supported by genetic associations in the eQTL and enrichment analysis. Further research and public health initiatives focusing on reducing specific SBs may be warranted.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Duração do Sono , Exercício Físico , Obesidade/genética , Proteínas
16.
J Cancer ; 15(5): 1191-1202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356717

RESUMO

Background: P7C3 is a novel compound that has been widely applied in neurodegenerative diseases and nerve injury repair. Here, we show that higher concentrations of P7C3 than are required for in vivo neuroprotection have the novel function of suppressing renal cell carcinoma (RCC) proliferation and metastasis. Methods: Colony formation, CCK-8 and EdU assay were applied to evaluate RCC cell proliferation. Wound healing and transwell assay were used to measure RCC cell migration and invasion. Flow cytometry assay was employed to detect RCC cell apoptosis and cell cycle. qRT-PCR assay was carried out to measure ribonucleotide reductase subunit M2 (RRM2) mRNA expression level, while western blot assay was utilized to detect the expression level of target proteins. RCC cell growth in vivo was determined by xenografts in mice. Results: We observed that high concentrations of P7C3 could restrain the proliferation and metastasis of RCC cells and promote cell apoptosis. Mechanistically, this new effect of higher dose of P7C3 was associated with reduced expression of RRM2, and the beneficial efficacy of P7C3 in RCC was blocked when suppression of RRM2 was prevented. When RRM2 suppression was permitted, the cGAS-STING pathway was activated by virtue of RRM2/Bcl-2/Bax signaling. Lastly, intraperitoneal injection of this high level of P7C3 in mice potently inhibited tumor growth. Conclusion: In conclusion, we show here that P7C3 that exerts an anti-cancer effect in RCC. Our study indicated that P7C3 might act as a novel drug for RCC in the future. The regulatory signal pathway RRM2/Bcl-2/BAX/cGAS-STING might present novel insight to the potential mechanism of RCC development.

17.
World J Clin Cases ; 12(3): 650-656, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38322467

RESUMO

BACKGROUND: Cerebral syphilitic gumma is a relatively rare clinical disease. Its clinical manifestations are non-specific, and the imaging manifestations are similar to other intracranial occupying lesions, often misdiagnosed as tumors or abscesses. There are few reports on this disease in the relevant literature. To our knowledge, we have reported the first case of cerebral syphilitic gumma misdiagnosed as a brain abscess.We report this case and provide useful information for clinical doctors on neurosyphilis diseases. CASE SUMMARY: We report the case to explore the diagnostic essentials of cerebral syphilitic gumma and attempt to mitigate the rates of misdiagnosis and missed diagnosis by equipping physicians with knowledge of neurosyphilis characteristics. The clinical diagnosis and treatment of a patient with cerebral syphilitic gumma were reported. Clinical manifestations, classifications, and diagnostic points were retrospectively analyzed. The patient was admitted to the hospital with fever and limb weakness. Brain magnetic resonance imaging showed multiple space-occupying lesions and a positive serum Treponema pallidum gelatin agglutination test. The patient was misdiagnosed as having a brain abscess and underwent a craniotomy. A postoperative pathological diagnosis of syphilis gumma was made. The patient improved and was discharged after penicillin anti-syphilis treatment. Follow-up recovery was satisfactory. CONCLUSION: Cerebral syphilitic gumma is rare in clinical practice, and it is often misdiagnosed and missed. Clinical diagnosis should be considered in combination with multiple examinations.

18.
Heliyon ; 10(3): e24824, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333835

RESUMO

Background: Airway remodeling is an essential pathological basis of respiratory diseases such as asthma and COPD, which is significantly related to pulmonary function and clinical symptoms. And pulmonary disease can be improved by regulating airway remodeling. This study aimed to establish a knowledge map of airway remodeling to clarify current research hotspots and future research trends. Methods: A comprehensive search was performed to analyze all relevant articles on airway remodeling using the Web of Science Core Collection Database from January 01, 2004 to June 03, 2023.2 reviewers screened the retrieved literature. Besides, the CiteSpace (6.2. R3) and VOSviewer (1.6.19) were utilized to visualize the research focus and trend regarding the effect of airway remodeling. Results: A total of 4077 articles about airway remodeling were retrieved. The United States is the country with the most published literature, underscoring the country's role in airway remodeling. In recent years, China has been the country with the fastest growth in the number of published literature, suggesting that China will play a more critical role in airway remodeling in the future. From the perspective of co-operation among countries, European co-operation was closer than Asian co-operation. The co-citation analysis showed that 98,313 citations were recorded in 3594 articles, and 25 clusters could be realized. In recent years, Burst detection shows that oxidative stress and epithelial-mesenchymal transition are hot words. Conclusions: Based on the bibliometric analysis of airway remodeling studies in the past 20 years, a multi-level knowledge structure map was drawn, it mainly includes countries, institutions, research fields, authors, journals, keywords and so on. The research directions represented by obstructive airway disease, PDGF-BB treatment of airway smooth muscle, allergen-induced airway remodeling, extracellular matrix, and non-coding RNA are the research hotspots in the field of airway remodeling. While the risk factors for airway remodeling, the application of new noninvasively assessing tools, biomarkers as well as The molecular mechanism represented by EMT and autophagy had been frontiers in recent years.

20.
J Virol ; 98(3): e0185923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38411948

RESUMO

Superinfection exclusion (SIE) is a phenomenon in which a preexisting infection prevents a secondary infection. SIE has been described for several flaviviruses, such as West Nile virus vs Nhumirim virus and Dengue virus vs yellow fever virus. Zika virus (ZIKV) is an emerging flavivirus posing threats to human health. The SIE between ZIKV and Japanese encephalitis virus (JEV) is investigated in this study. Our results demonstrate for the first time that JEV inhibits ZIKV infection in both mammalian and mosquito cells, whether co-infects or subsequently infects after ZIKV. The exclusion effect happens at the stage of ZIKV RNA replication. Further studies show that the expression of JEV NS2B protein is sufficient to inhibit the replication of ZIKV, and the outer membrane region of NS2B (46-103 aa) is responsible for this SIE. JEV infection and NS2B expression also inhibit the infection of the vesicular stomatitis virus. In summary, our study characterized a SIE caused by JEV NS2B. This may have potential applications in the prevention and treatment of ZIKV or other RNA viruses.IMPORTANCEThe reemerged Zika virus (ZIKV) has caused severe symptoms in humans and poses a continuous threat to public health. New vaccines or antiviral agents need to be developed to cope with possible future pandemics. In this study, we found that infection of Japanese encephalitis virus (JEV) or expression of NS2B protein well inhibited the replication of ZIKV. It is worth noting that both the P3 strain and vaccine strain SA14-14-2 of JEV exhibited significant inhibitory effects on ZIKV. Additionally, the JEV NS2B protein also had an inhibitory effect on vesicular stomatitis virus infection, suggesting that it may be a broad-spectrum antiviral factor. These findings provide a new way of thinking about the prevention and treatment of ZIKV.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Superinfecção , Proteínas não Estruturais Virais , Infecção por Zika virus , Animais , Humanos , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/metabolismo , Encefalite Japonesa/virologia , Estomatite Vesicular , Zika virus , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...